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ABSTRACT

A reliability model is presented for planetary gear trains in which the
ring gear is fixed, the sun gear is the input, and the planet arm is the
output. The input and output shafts are co-axial and the input and output 1

torques are assumed to be co-axial with these shafts. Thrust and side i
loading are neglected. This type of gear train is commonly used in _a_n i
rotor transmissions for helicopters and in other applicationswhich require i
high reductions in speed. The reliability model is based on the Weibul] I
distribution of the individual reliabilities of the transmission I
components. The transmission's basic dynamic cap_city is defined as the I

input torque which may be applied for one million input rotations of the sun IIi
gear. Load and life are related by a power law. The load-life exponent and
basic dynamic capacity are developed as functions of the component
capacities, t,

{

INTRODUCTION

In recent years, it has been commonly accepted that, in the design of
mechanical components and systems, the fixed load-fixed strength approach
must be complimented with a more realistic approach [1,2,3]*. It is not
prudent to assess a proposed design by calculating a sidle factor of
safety. The more realistic approach is offered by the methods of _
probablistic design. In probabilistic design, a proposed design is
evaluated in i:ermsof statistically varying load and strength

; characteristics which more nearly model the true situation. A statistical
(probabilistic) approach, which requires knowledge of the nominal loads and i

- strengths as well as the statistical variations in each, allows the designer Ir
to assess the reliability or probabilit_ of survival of the mechanical i

" system [2,3]. _rhisis not possible with the factor of safety approach. '

_-Numbersir brackets denote references at the end of the paper.

b
L

1982020767-002



The utility of a probabilistic approach to design is most apparent in
the design of airborne power transmission systems. The requirements of low
weight, high power densities, and high speeos must be balanced against
requirements of reliability maintainability, and long mean times between
overhauls (MBTO's). Currently, tnere is no suitable probabilistic design
methodology for designing lightweight planetary gear trains tor helicopter
applications.

The probabilistic aesign approach has been applied to machine systems
by Haugen and Smith [2,3] and to the aesign of epicyclic gear trains by Rao
[4]. These design procedures have been based on the use of the Gaussian
distribution for both the service load a q for the component strengths.
Both procedures also assume the existence of an endurance limit which is the
limiting stress under which the components and the mechanical system have
infinite lives.

It has been shown by Lunaberg an_ Palmgren [5,6] ano by Coy, Townsend
and Zaretsky [7,8,9] that rolling element bearings ano high strength steel
gear teeth exhibit a finite life under any level of applied stress. The
statistical model for the lives and capacities of these components follows
the Weilbull distribution [3,5,6,9-11]. The finite life conaition of these
components is due to the nature of pitting fatigue to which both gears and
bearings are subjected. Even in carefully designed gears and bearings where
adequate lubrication and no unexpected servlce conditions exist, pitting
fatigue failure will eventually end the useful lives of both bearings ana
gears [5,6,W]. Therefore, in the present stuay, pitting fatigue is tne moae
of failure on which the reliability of each component is based.

In Rao's treatment cf the epicyclic gear train [4], service load
variation is considered and both tooth bending fatigue and pitting fatigue
types of failure are aamitted. However, the effects of the planet bearing
lives on the system are not treated and the parallel planet load paths are
treatea as statlstically redundant structural load paths whlch increase the
system reliability. In reality, the planet bearings are critical elements
in the assembly ana broken component debris in a high speed transmission is
sufficient to cause total system failure once a single component has
failed. Thus, a strict series reliability moael is required to adeqLately
model a planetary gear train.

In view of the above mentioned, the object of the research reporteo
herein is to aerive a reliabllity momel for planetary gear trains of the
type used in helicopter main rotor transmissions. Therefore, the particular
Kinematic inversion of ti_egear train treated herein has the ring gear
fixed, the sun gear as input and the planet carrier as output. It Is
assumea that the _nput and output shafts are co-axial, carrying simple
torque loads. The reliability model is based on the reliabilities of the
individual gears and bearings and is Weibull in nature. The transmission

$

: reliability is presented as a system life for 90 percent probability of
. survival of the entire assembly based on corresponding lives for the
m inaividual components. The transmission's basic dynamic capacity is defined

as the input torque which may be applied for one million rotations of the
input sun gear with a 90 percent probability of survival. The variation of

: life with loaa for a given reliability is modeled with a power law
relation. When plotted on log-log coordiates the relation becomes a

2
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straight line. The relationship is treated as being uncoupled from the
Weibull relationship of reliability to life at a given load [5,8,10]. The
load life exponent and basic dynamic capacity are developed as functions of
the component capacities.

KINETICS AND KINEMATICS

The gear train under consideration is shown in figure I in its most
general configuration. There are stepped planet gears: an inner planet
gear to mesh with the sun, and an outer planet gear to mesh with the ring.
Each inner and outer planet is locked together as a single rigid body with a
bearing at its center. The centers of these bearing are connected to a
spider which provides the slower output motion. The number of planets may
vary but each planet is assumed to be identical with the others. Each
planet is assumed to carry an equal share of the total load. Figure 2 shows
a single planet in mesh with the sun and the ring and joined to the spider
or arm at its center A with a bearing. The radii of the spider and ring are
related to the sun and planet radii as

RA : RS + Rps (i)

RR = RA + RpR = RS + Rps + RpR (2)

The forces acting on the planet gears are shown in figure 3. The force
components acting tangent to the pitch circles, FS ana FR, in terms of
the input torque, li, are

Ti

FS - nRS (3)

FR= PR RFs:R PR (4)

The tangential component of the bearing force is

Ft=is+FR= )

The total bearing loaa also includes a radial component due to the
raaial components of the gear tooth loads.

Fr = FR tan _R - Fs tan _s (6)

3
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The total bearing loaa is thus

FB = VFt 2 + Fr2 (7)

It shou|d be noted that this analysis assumes that the planet forces
are containea in a radial plane of he transmission so no nutating loaas
exist on the planet bearings. This can be achieved in the stepped planet
transmission by constructing the planets as spools with axial symmetry.

A kinematic ana]ysis of this planetary is also required to determine
the relative number of load cycles that each component sees as the input sun
rotates. This is needed for the fatigue life analysis. The kinematic
analysis has been derived in reference [12]. The results are presentea in
table i, where the rotation of each component _s given in terms of the
rotation oT the sun gear. All rotations are taken in the coordinate frame
of the ring gear which is held fixea. Reaaing across in the tab]e, for each
of the components i, one obtains the terms tor the following relative
angular motion expression

ei = el/A + eA (8)

where A represents the arm or spider.

The itemized angular rotations in this table can be used to relate the
number of load cycles of the various components to the number of input sun
rotations.

PLANET BEARING RELIABILIIY AND CAPACITY

The reliability and capacity of the planetary assembly is a function of
the reliabilities and capacities of its components. These quantities have
been well defined for the bearings [5,6,13]. The fatigue life model
proposed in 1947 by Lundberg and Plamgren [5] is still the commonly accepted
theory. The reliability of a single bearing can be expressed in terms of
its probability of survival, S, for a life of _ rotations by the
following relation

V

log _- c LeB Th (9)

where T is the critical shearing stress beneath the surface, z is the
depth unaer the surface to the location of the critical stress, and V is
stressed volume. The exponents are determined from experimental lite

: testing on groups of bearings run under identical conditions. The Weibull
_ exponent eB is a measure of the scatter in tlledistributlon of bearing
: lives.

'L The above formula for probability of survival reflects the observed
- effects of stress, stress field, and stress cycles on reliability. Greater

stress, T, decreased reliability. A more shallow stress field (smaller z)

4
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decreases reliability. This is true because it is expected that a
microcrack beginning at a point of maximum stress under _he surface requires
some time to propagate to the surface. Therefore, for z_,ygiven number of
stress cycles, there is a higher probability that cracks have propagated to
the surface for the more shallow stress field.

The stressed volume V is also an important factor. Pitting initiation
occurs near any small stress raising imperfection in the material. The
larger the stressed volume, the greater the likelihood of faiiure.

For a given load and geometry of the bearing the expression can be

life, which is the life corresponding to awritten in terms of the i%§probability of survival o percent.

I 1 _/\ eB

log = log (1o)

The relationship between the bearing life and its load for a 9(Jpercent
probability of survival is

LBI0 - (Ii)

where FB is the load on the bearing, Pb is the load-life exponent and
C is the ingle .basic capac a sdynamic ity of bearing The basic dynamic
capacity is defined as the load which may be endured by 90 percent of the
bearings for one million inner race revolutions under certain operating
conditions.

To facilitate the combination of lives and capacities of all the
transmission components into a single life and capacity for the
transmission, the lives and the dynamic capacities of each of the components
will be expressed in terms of input sun gear rotations and input sun gear
torque.

From table 1, the bearing inner race rotation is given in terms of sun
rotations

eB 1
= RpS + RpR eS (12)

? Using lower case L's to designate component lives in terms of

component cycles and upper case L's to d_signate component lives in terms of
. input sun gear rotations, equation (12) transforms equation (10) ir_to
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I RS RR LB eB OR|GINAL PP.O_ _"

= _C } OF poOR QUALITY (13)lOg_BB log ._ (RR Rps + RS R'ps)'_BIO

For _ 90 percent survival rate for a planet bearing, SB = .g and LB =
LBI0 sun gear rut_tions, substitution into equation (13) yields

( RR RPS + RS RPR) (14)LBIO = RR RS _BIO

as expected from equation (12).

Io obtain the load-life relation for the bearing in terms of
transmission input parameters, one can substitute the expressions for
bearing load in terms of input torque as given by equations (3-7) into
equation (II) and substitute all of this into equation (14)

I nRsCB 1 PBLBIO = LrRRRPS+RsRpRIRRRsj iL\,_RPR + Rpp_ + (Rps tan, R _ tan, s) 2]i/2RPR/_PR_R (15)

The dynamic capacity of a planet bearing is now the input torque on the sun
shaft which may be applied with 90 percent of the planetary bearings
surviving for one million sun shaft revolutions. From equation (15) the i
planet bearing system dynamic capacity of Ti : DB is obtained when J
LBI 0 = 1.0. The result for the dynamic capacity is i

i

{RpsRR + RpRRs_ nRsCB

% \ RRR's } RpR + Rps12 R_PStan,_- tan,

The relationship between bearing life in millions of sun rotations and
applied sun shaft torque for which 90 percent o. the bearings will endure is
given by

LBI0 = T_i (17)

II,

' the fundamental quantities that describe the reliability and life
distribution _or single bearings and bearings treated as transmission

:" components have now been determined. Finally, the probability distribution
for the reliability of a planet bearing is written as

6
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IL-B_IOIeB

log 1 = log 1 LB-- -- (18)

SB .9

i Where LB is the number of million sun rotations for which the bearing set
has the probability of survival, SB.

SUN GEAR RELIABILITRY AND CAPACITY

Surface fatigue life and dynamic capacity for a spur gear have been the
subjects of recent research [7,8,9]. This researct has applied the1

previously mentioned Lundberg-Palmgren reliah"ilty model to spur gears.

Tests have shown that the pitting fatigue life of gears follows this

reliability relationship, but with a oifferent Weibull exponent, eG, than
that for bearings.

1 II___)eG
log _: log . (19)

where S is the probability of survival of a single gear tooth and L is
the number of stress cycles imposed on the gear tooth surface.

The load life relationship for a single tooth for a 90 percent
probability of survival is

_i0 : (20)

where F is the transmitted tangential tooth load and CT is the basic
dynamic capacity of the tooth which has been developed in reference [9].

Ct = B1 fa Epb zc (21)

where f is the active tooth fa:e width, Zp is the curvature sum at the
pitch point, _ is the length of heaviest load contact on the tooth and
the constant B1 and exponents a, b, c are based on experimental results
from gear life testing. For case hardened AISI 9310 Vacuum Arc Remelt Steel
ears, these constants are: BI = 20832, a = 0.907, b = -1.16, and c =
.093 in the pound-inch system-of units.

t At this point, this fundamental gear tooth reliability equation is
: applied to the sun gear. Since there are n planets, for a number of

rotations of the sun gear relative to the planet carrier, LSIA, each tooth
on the sun sees n LSIA load cycles. From table i, the number of load

- cycles, ms, are expressed in terms of sun rotations, _S, as:

m-
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nLS I

&S = i + Rs'R'pR (22)

The probability of survival for the sun gear, SS, follows from the
application of the product law for the number of teeth on the sun gear, NS.

NS
SS = S (23)

Using equations (19), (22) and (23) the expression for the reliability

of the sun gear becomes: i

I n RRRps _ eG

log:= NS log 1 RRRps + RsRp#_SIOj J (24) ,,

where LS is the number of million sun revolutions corresponding to the
probability of survival SS for the sun gear and &SIO is the number
of million stress cycles that a single tooth on the sun gear may endure with
a 90 percent probability of survival. Equation (24) is directly parallel to
Equation (13) for the planet bearings. By similar arguments, the 90 percent
life of the sun gear in terms of sun gear rotations is related to the 90
percent life of a single sun gear tooth in terms of tooth load cycles as:

LSIO : _ n RR Rps I_SIO (25)

As with the planet bearings, one can substitute the single tooth load
life expression (equation 20) into equation (25) and express the transmitted
load in terms of the input transmission torque (equation 3) in order to
obtain the expression for the sun gear dynamic capacity, DS, in terms of
an individual sun tooth's dynamic capacity, CS, when LSI0 equals 1
million sun rotations:

1
I w

DS: NS] n RR Rps ] n RS CS (26)

_ The relationship for sun gear life and applied sun shaft torque for
which 90 percent of the sun gears will survive is now given by:

fDs\_PG

" LSIO =_'_i/ (27) '

8
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i

Finally, the probability distribution for the reliability of the sun gear
can be written as:

(28)
where LS is the number of million sun rotations for which the sun gear has
the probability of survival SS.

RING GEAR RELIABILITY AND CAPACITY

The reliability and dynamic capacity of the ring gear is developed in a
similar fashion to that of the sun gear. Equations (19), (20) and (21) are
equally valid for the ring gear teeth as they are for the sun gear teeth.
Different values for tooth life and basic dynamic tooth capacity result from
the difference in tooth mesh geometry. With teeth of the same pitch and
face width as those on the sun gear, the ring gear should be considerably
more reliable and should have a higher basic dynamic capacity due to the
conformal contart of the internal gear teeth of the ring with the external
teeth of the planet gear. The relationship between the number of load
cycles on a ring gear tooth, LR, and the number of sun rotations, LR,
taken from tab!e 1 is:

n LR
= (29)

_R RR Rps1+

The probability of survival for the ring gear, SR, follows from a
direct application of the product law for the number of teeth on the ring
gear, NR.

NR
SR = S (30)

where S is the probability of survival of a single tooth on the ring gear.
Combining equation (19) with equations (29) and (30) yields the expression
for the reliability of the ring gear.

1 f n RsRpR LR _[eG

The 90 percent life of the ring gear in terms of sun gear rotations is
related to the SO percent life of a single ring gear tooth in terms of tooth
load cycles by:

9
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LRIO : i eG S f RIO (32)

The basic dynamic capacity, DR, of the ring gear is the input sun
torque for which the ring gear has a 90 percent probabi|ity of surviving tG-_
one million rotations of the sun gear:

1

r b IPGfn RsRpR
[i \eGPG RsRpR + RpRps CR (33)

DR = _I_Rj | n RS RpR _ P'_S

The relationship for ring gear life in terms of app]ied sun shaft
torque for which 90 percent of the ring gears will survive is now given by

LR10 : (34)

The basic quantities of reliability and life are now also establisheo
fo: the ring gear. The probability distribution for the reliability of the
ring gear can be written as

i _LR__ eG

)
where LR is the number of million sun rotations for which the ring gear
has the probability of survival SR. I

PLANET GEAR RELIABILITY AND CAPACITY

The last set of elements in the planetary transmission which possess
finite pitting fatigue lives are the planet gears themselves, lhese gears
mesh with boti_the sun gear and the ring gear. However, as can be seen in
figures 2 and 3, the loads of the two meshes are carried on the opposite
sides of the planet teeth. Thus, even if the planets are not stepped and
RPS . RpR, the p!tting damage accumulation from each mesh is Independent
of the o_her as long as increased dynamic loading does not occur. It is

assumed in this model that this increased dynam4c ]oading occurs after the
onset of failure, so the two failure accumulations are counted separately.

The number of load cycles that each planet tooth sees as a function of
the number of sun rotations is taken from table I as the relative rotation

of the planet with respect to the arm:

-. RRRsLR
Lp �(36)

" RRRps RsRpR

10
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This number of load cycles is the same for the teetn meshing with the
sun gear and the teeth meshing with the ring gear, though the fatigue damage
at the two meshes differ.

The probability of survlval for the planet gear, Sp, is the product
of the probabilities at each mesh

NpS NpR
Sp = Sps . SpR (37)

combining equation (19) for each mesh with equations (36) and (37) yields
the expression for the reliability of a planet gear:

}RRRS Lp eG
1Og_p : Nps log ._ RsRpR + RRRps),PSI0

I(f RRRS RRRps)_p_ILPOl eG+ NpR I°glRsRpR + (38)

The 90 percent life of the planet gear in terms of the £0 percent lives of
its teeth is thus:

{ }LpIO = L RRRs j (Nps)lleG + (39)LPRIO (NpR)I/eG LPSIO

The basic dynamic capacity, Dp, of a planet gear is the input sun
torque for which the planet gear has a 90 percent probability of surviving
for one million rotations of the sun gear:

Dp
= i --RRRS J I I ' 140)L PS RpRCR + NpR

The relationship for planet gear life in terms of applied sun shaft
torque for which 90 percent of the planet gears will survive is now:

". Lp10 = (41)
lb

w

The funaamental quantities needed to describe the reliability and life
distribution for a11 gears in the transmission have now been determined.

11
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Finally, the probability distribution for the reliability of a planet gear
is written as:

1 Lp es

1o9 :ioq

SYSTEM RELIABILITY AND CAPACITY

The product rule may be used to express the probability of survival of
the total system consisting of the planet bearings, "he sun gear, the planet
gears and the ring gear.

n n (43)ST = SBSsSpSR

The probability distribution for the survival of the total transmission
can now be obtained by substituting equations (18), (28), (35) and (4?) into
the natural log of the reciprocal of equation (43).

I log _(LT_eB + _LT _eG + R(LT _eG + _LT_eG'_

log (44)

Since all the component lives are counted in the same units of sun
rotations, this count is now identical for all the co_onents and is thus
labeled as LT in the expression for the probability of survival ST fnr
the entire transmission.

Uafortunately, equation (44) is not a strict Weibull relationship
between system life and system reliability. This equation woOld represent a
true Weibull distribution only if eb , eG which is not the case in
general. The relationship of'equation (44) can be plotted on Weibull
cooreinates as shown in figure 4.

The exa_les presented in this plot and the succeeding plots are for
the planetary of figure 1 with 20 teeth on the sun, 85 teeth on the ring, 40
teeth on the three planet gears which nweshwith the sun and 25 teeth on the
three planet gears which mesh with the ring. The gears all have a module of
1.59 mm (Pd . 16) and face widths of 9.19 mm (0.315 in.). The gears are
standard 20 degree involute and are all made of AISI 9310 steel. The
transmission is loaded with an input sun torque of 48 N-m (425 pound-
inches). For the cases treated in this study, the bearin9 Weibull exponent
is 1.2 while the gearing Weibull exponent is 2.5. Fol this balanced casee
each planet bearing has a basic dynamic capacity nf 15,250 N (3425 pounds).

_ This curve can be approximated by a ctraight line using the least

• squared erroF approach over a range such as 0.5 < ST < 0.95. The slope of
this straigh_ line approximation is called th_ system-Weibull slope eT and

7 the system life of the straight line approximation at Sr I 0.9 is called
the system 90 percent reliability life.

12
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The exact LTI0 life can be calculated by setting ST = 0.9 in
equation (44) and _terating for LT10 ;: the simplifiea equation:

1: n{LTIO_eB (LTIo_eG n(LTIOIeG + (LTIoIG
\L-BTo)+%1o/ + \LP1o/ (45)

For the cases studied in this research, the defined Weibull LTI0 life
: has not differed from the LT10 life calculated tom equation (45) by more

than one percent. Sinc_ this error is considerably less than that between
test data for the components and the resulting con_DonentWeibull lines, it
is felt that the approximation is justified. When one component is weak
relative to the rest of the transmission, the reliability model of the
entire transmission and the least squares apprcximetion will approach Lhe
Weibull model of the weak cumponent. This is shown in figure 5 whlch is a
series of Weibull plots for the planet bearing, sun gear and total
transmission for the case of a transmission with LB10 = 1.7 million
cycles, LS10 = 84 3 million cycles and LT10 = 0.68 million cycles. This
exan_olediffers from that of figure 4 in that the planet bearings are weaker
with a dynamic capacity of 3460 N (800 pounds). In this case, the bearing
life dominates the transmission and the transmission Weibu]l exponent is 1.2.

If the bearing capacity approaches that of the sun mesh, then the
actual transmission reliability curve deviates the most from the least
squares Seibull approximation. This is shown in figure 6 which is a series
of Weibull plots for the planet bearing, sun gear and total transmission for

the case of a transmission with LB?0 = 207 million sun rotations, LS1Q =
84.3 million sun rotations and LT10 = 55.5 million sun rotations. Thls is
the same case shown in figure 4. For this case, the transmission Weibull
exponent is 1.84.

For this straight line transmission Weibul] curve, the reliability of
tiletransmission is approximated by:

i log I___LT _Tlog (46)

The basic dynamic capacity for the transmission, DT, is the sun input
torque required to produce a system 90 percent reliability life, LTIO of
one million sun rotations. By letting ST = 0.9 in equation (44) ana
substituting equations (17), (27), (34) and (41), one has for LT10 = i;

I = n ID_BIPBeB + [I_S] PGeG + n D[_p]PGeG + [D_R]PGeG (4?) :

The basic dynamic capacity of the transmission can be found by
iterating this expression since the c_onent exponents and capacities are
known. It can also be found from equation (45) by determining a sequence of
LTIO'S corresponding to a sequence of input sun torques, Ti's, and

13
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plotting the natural log of T_ versus the natural ]og of LTIO. Thevalue of Ti corresponding to [TIO 1 million sun rotations Is the
transmission basic dynamic capacity. A plot of log Ti versus log LTI0
is shown in figure 7 from the transmission example of figure 6. The slope
of this curve is the negative of the ]dad life exponent PT for the
transmission. The case shown is that of nearly equal lives and capacities
in which the deviation from a straight line relation is maximized. For the
cases studied in this research PB = 3.3 and PG = 4.3. For this example
the basic dynamic capacities are: DR = 242 N-m (2140 pound inches),

" DS = 135 N-m (1190 pound inches), and DT = 134 N-m (1180 pound inches).
As for the transmission Weibull model, an approximate load-life curve is
obtained by a least squares fit over a range of input torques (i.e.,
0.1D T < Ti < DT). With this approximation the 1oad-]ife relation for

, the system iT g]ven by:

hlo (48)

For the example plotted in figure 7, the transmission loaa-life exponent,
PT, is 3.8. As for the Weibull model, a weak component will dominate the
transmission dynamic capacity and the system capacity and load-life factor
will approach that of the weakest component.

SUMMARY

A reliability model for the planetary gear train has been aerived for
use in the probabalistic design of this type of transmission. This gear
train has the ring gear fixed, the sun gear as input and the planet carrier
as output. The input and output shafts are assumed to be co-axia] with the
applied torqJes and each other; no side loading is considered.

The reliability model is based on reliability models of the bearing and
gear mesh components which are two dimensional Weibull distributions of
reliability as a function of life. The transmission's 90 percent
reliability life and basic dynamic capacity are presented in terms of input
sun rotations ana torque. This life ana capacity are given as exact
functions of the component lives and capacities. However, due to the
different distributions for the bearing and gearing components, the Weibu'l
_,odelfor t_e planetary transmission is an approximate mode]. In this
model, the Lransmission's90 percent re]lability life, Weibull exponent,
basic dynamic capacity and load-life exponent are presented.

The following results were obtained:

1. A system reliability model for planetary sput gear trains including the
planet bearings ana the possibility of stepped planets was formulated;

2. The fact that Weibull reliability distributions with different Weibul]
-, exponents do not follow the law of mathematical closure was aisclosed;
L and,

14
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3. Straight line Weibu11 and load-life exponents were formulated for a
system Weibull model containing different types of components.

NOMENCLATURE

C basic dynamic component capacity (N)
D basic dynamic system capacity (N-m)
e Weibull exponent

, f gear face width (m) _
F force (N)

: _ life in millions of component load cycles
L life in millions of sun gear rotations
n number of planets
N number of gear teeth
p load-life exponent
R gear radius (m)
S probability of survival (reliability)
Ti input torque (N-m)_
V stressed volume (mj)
z depth to maximum snear stress (m}
Zp curvature sum at pitch point (m-I)
e angular rotation

maximum shear stress (Pa)
pitch line pressure angle

Subscripts

A planet carrier or arm
B planet bearing
r radial direction
P planet gear
PR planet gear meshing with ring gear
PS planet gear meshing with sun gear
R ring gear
S sun gear
T transmission
t tangential direction
10 corresponding 90 percent probability of survival
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Figure3. - Planetgearforces. !
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Figure7. - Load-lifecurvefora full planetarysystem.
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